3,109 research outputs found

    Study of the excited 1βˆ’1^- charm and charm-strange mesons

    Full text link
    We give a systematical study on the recently reported excited charm and charm-strange mesons with potential 1βˆ’1^- spin-parity, including the Ds1βˆ—(2700)+D^*_{s1}(2700)^+, Ds1βˆ—(2860)+D^*_{s1}(2860)^+, Dβˆ—(2600)0D^*(2600)^0, Dβˆ—(2650)0D^*(2650)^0, D1βˆ—(2680)0D^*_1(2680)^0 and D1βˆ—(2760)0D^*_1(2760)^0. The main strong decay properties are obtained by the framework of Bethe-Salpeter (BS) methods. Our results reveal that the two 1βˆ’1^- charm-strange mesons can be well described by the further 23 ⁣S12^3\!S_1-13 ⁣D11^3\!D_1 mixing scheme with a mixing angle of 8.7βˆ’3.2+3.98.7^{+3.9}_{-3.2} degrees. The predicted decay ratio B(Dβˆ—K)B(DΒ K)\frac{\mathcal{B}(D^*K)}{\mathcal{B}(D~K)} for Ds1βˆ—(2860)D^*_{s1}(2860) is 0.62βˆ’0.12+0.220.62^{+0.22}_{-0.12}.~Dβˆ—(2600)0D^*(2600)^0 can also be explained as the 23 ⁣S12^3\!S_1 predominant state with a mixing angle of βˆ’(7.5βˆ’3.3+4.0)-(7.5^{+4.0}_{-3.3}) degrees. Considering the mass range, Dβˆ—(2650)0D^*(2650)^0 and D1βˆ—(2680)0D^*_1(2680)^0 are more likely to be the 23 ⁣S12^3\!S_1 predominant states, although the total widths under both the 23 ⁣S12^3\!S_1 and 13 ⁣D11^3\!D_1 assignments have no great conflict with the current experimental data. The calculated width for LHCb D1βˆ—(2760)0D^*_1(2760)^0 seems about 100 \si{MeV} larger than experimental measurement if taking it as 13 ⁣D11^3\!D_1 or 13 ⁣D11^3\!D_1 dominant state cuΛ‰c\bar u. The comparisons with other calculations and several important decay ratios are also present. For the identification of these 1βˆ’1^- charm mesons, further experimental information, such as B(DΟ€)B(Dβˆ—Ο€)\frac{\mathcal{B}(D\pi)}{\mathcal{B}(D^*\pi)} are necessary.Comment: 18 pages, 3 figure

    Strong Decays of the Orbitally Excited Scalar D0βˆ—D^{*}_{0} Mesons

    Full text link
    We calculate the two-body strong decays of the orbitally excited scalar mesons D0βˆ—(2400)D_0^*(2400) and DJβˆ—(3000)D_J^*(3000) by using the relativistic Bethe-Salpeter (BS) method. DJβˆ—(3000)D_J^*(3000) was observed recently by the LHCb Collaboration, the quantum number of which has not been determined yet. In this paper, we assume that it is the 0+(2P)0^+(2P) state and obtain the transition amplitude by using the PCAC relation, low-energy theorem and effective Lagrangian method. For the 1P1P state, the total widths of D0βˆ—(2400)0D_0^*(2400)^{0} and D0βˆ—(2400)+ D_0^*(2400)^+ are 226 MeV and 246 MeV, respectively. With the assumption of 0+(2P)0^+(2P) state, the widths of DJβˆ—(3000)0D_J^*(3000)^0 and DJβˆ—(3000)+D_J^*(3000)^+ are both about 131 MeV, which is close to the present experimental data. Therefore, DJβˆ—(3000)D_J^*(3000) is a strong candidate for the 23P02^3P_0 state.Comment: 21 pages, 10 figure

    Predicting nonlinear dynamics of optical solitons in optical fiber via the SCPINN

    Full text link
    The strongly-constrained physics-informed neural network (SCPINN) is proposed by adding the information of compound derivative embedded into the soft-constraint of physics-informed neural network(PINN). It is used to predict nonlinear dynamics and the formation process of bright and dark picosecond optical solitons, and femtosecond soliton molecule in the single-mode fiber, and reveal the variation of physical quantities including the energy, amplitude, spectrum and phase of pulses during the soliton transmission. The adaptive weight is introduced to accelerate the convergence of loss function in this new neural network. Compared with the PINN, the accuracy of SCPINN in predicting soliton dynamics is improved by 5-11 times. Therefore, the SCPINN is a forward-looking method to study the modeling and analysis of soliton dynamics in the fiber
    • …
    corecore